February 6, 2024  Print

Treating and preventing ventricular arrhythmia following stem cell-derived heart muscle graft

New research conducted at WIMR has solved a complication that could occur following an experimental procedure to repair damaged heart muscle.

The findings were published in Nature Cardiovascular Research.

A new procedure
In 2014, Professor James Chong led a research team at WIMR that used stem cells to successfully grow new heart muscle, to repair damage caused by heart attack.

Professor Chong, who is Co-Director of WIMR’s Centre for Cardiac Research, and a consultant interventional cardiologist at Westmead Hospital and Professor of Cardiovascular Medicine at the University of Sydney Faculty of Medicine and Health, explains there is currently no way to regenerate heart muscle that has been severely damaged or has died following a heart attack.

“At the moment, damaged or dead heart muscle cannot be replaced to any meaningful degree, so a heart transplant is the only ‘cure’ available to patients with end stage heart disease.  However, not all patients are eligible for a transplant, and donor organs are in short supply. So, the potential to replace new, healthy heart muscle with a graft that has been created using stem cells could save many thousands of lives,” says Professor Chong.

The Australian Institute of Health and Welfare estimates that in 2021, cardiovascular disease was the underlying cause of 42,700 deaths (25% of all deaths) in Australia.[1]

Solving a deadly complication
A potential complication has been identified following a graft of these stem cells derived heart muscle – ventricular arrhythmias. Ventricular arrhythmias cause the heart to beat too fast, which prevents oxygen-rich blood from circulating to the brain and body and may result in cardiac arrest.
Lead author of this new research, Professor James Chong says, “We have identified factors that contribute to these ventricular arrythmias, as well as determining that existing clinical treatment strategies can control and potentially abolish these arrhythmias.”

The research shows that the type of stem cells used, and the way they are developed into new heart muscle can be a cause of ventricular arrhythmia.

Professor Chong says, “We have detected specific cardiomyocytes (a type of heart muscle cell) that contribute to these ventricular arrhythmias, and we have been able to identify two unique surface marker signatures (SIRPA+/CD90-/CD200+ and SIRPA+/CD90-/CD200).

“This allows us to differentiate between arrhythmogenic and non-arrhythmogenic cardiomyocytes respectively, meaning we can choose the cells that are less likely to result in a deadly ventricular arrhythmia.”

In terms of treating these ventricular arrhythmias, the research team has shown that a combination therapy of existing drugs can provide the required control. 

Professor Chong explains, “When combined, amiodarone (a drug that works directly on heart tissue to slow the nerve impulses in the heart) and ivabradine (a drug used to treat heart failure by slowing the heart rate) were shown to significantly reduce the incidence of ventricular arrhythmia following this graft process.”

Professor Chong says, with planning and recruitment for human clinical trials of stem-cell derived heart muscle grafts underway around the world, including at Westmead, there is an urgent unmet need to understand why these arrythmias occur, and to develop treatment strategies to control or prevent these engraftment arrhythmias.

“We are delighted that our research findings help to overcome a significant hurdle for the successful human application of stem cell-derived heart muscle grafts,” says Professor Chong.

[1] https://www.aihw.gov.au/reports/heart-stroke-vascular-disease/hsvd-facts/contents/disease-types